Anterior

Índice

Siguiente

 

4.1 Definición y clasificación

Se llama fracción o quebrado al cociente indicado de dos expresiones algebraicas cualesquiera. El dividendo se llama numerador y el divisor se llama denominador y ambos se conocen como términos del quebrado. Así, a/b es una fracción algebraica porque es el cociente indicado de la expresión a (dividendo) entre expresión b (divisor).

Fracción algebraica simple

Es la que el numerador y denominador son expresiones racionales enteras. Son ejemplos de fracciones simples:

.

Fracción propia e impropia

Una  fracción simple se llama propia si el grado del numerador es menor que el grado del denominador; y se llama impropia si el grado del numerador es mayor o igual que el grado del denominador.

Por ejemplo,  son fracciones propias, mientras que  son fracciones impropias. Una fracción impropia puede escribirse como la suma de un polinomio y una fracción propia.

 

Fracción compuesta

Una fracción compuesta es aquella que contiene una o más fracciones ya sea en su numerador o en su denominador, o en ambos. Son ejemplos de fracciones compuestas:

 

Significados de una fracción

Significado 1.- Una fracción indica una división. Por ejemplo, ¾ quiere decir 3 divido por 4 o bien 3¸4. Cuando una fracción significa división, el numerador es el dividendo y el denominador es el divisor.

Significado 2.- Una fracción indica una razón. Por ejemplo, ¾ quiere decir 3 a 4 o bien 3:4. Cuando una fracción significa razón de dos cantidades, éstas deben estar expresadas en las mismas unidades. Por ejemplo la razón de 3 días a 2 semanas es 3:14 o bien 3/14. Se ha hecho la equivalencia de 2 semanas a 14 días eliminándose luego la unidad común.

Significado 3.- Una fracción indica una parte de todo o una parte de un grupo de cosas. Por ejemplo, ¾ puede expresarse tres cuartos de una moneda o bien 3 monedas de 4 monedas.

 

Numerador o Denominador Nulo

Si el denominador de una fracción es cero, el valor de dicha fracción es nulo siempre que el denominador sea distinto de cero. Por ejemplo 0/3 = 0. Asimismo, si x/3=0 se deduce que x=0. La fracción para x = 5 vale cero. Sin embargo 0/0 es indeterminado.

Como la división por cero carece de sentido, una fracción cuyo denominador sea cero es imposible. Por ejemplo 3¸0 es imposible. O bien 3/0 carece de sentido. Asimismo, si x = 0 la fracción 5¸x es imposible o bien 5/x carece de sentido.

 

Anterior

Índice

Siguiente

 

UMSNH Salvador González Sánchez 2005